Prime and Composite Numbers

Dr. Aselebe Lateefat O.

<ロト < 団ト < 臣ト < 臣ト

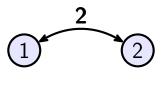
1 / 13

990

www.aselebelateefatacademy.com

- Understand the definitions of prime and composite numbers.
- Identify prime numbers using divisibility rules.
- Distinguish between prime and composite numbers with examples.
- Apply divisibility rules to test numbers.
- Classify numbers effectively using visual aids and factorization.

- 4 同 ト 4 ヨ ト 4 ヨ ト


A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. **Examples:**

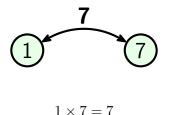
- 2 is a prime number because it has only two factors: 1 and 2.
- Other primes: 3, 5, 7, 11, 13

◆ロト ◆聞 ト ◆ ヨト ◆ ヨト

Ξ

2 is a prime number. Its factors are 1 and 2.

 $1 \times 2 = 2$


◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

4 / 13

€ 990

www.aselebelateefatacademy.com

7 is a prime number. Its factors are 1 and 7.

《曰》《聞》《臣》《臣》

5 / 13

€ 990

www.aselebelateefatacademy.com

To determine whether a number is prime:

- Check if it has exactly two positive divisors.
- Use divisibility rules to eliminate non-primes.

If divisible by 2, 3, 5, or 7 ightarrow not prime.

A (1) × (2) × (3) ×

Divisibility Rules

Divisible by	Rule
2	Ends in 0, 2, 4, 6, or 8.
3	Sum of digits divisible by 3.
4	Last two digits form a number divisible by 4.
5	Ends in 0 or 5.
6	Divisible by both 2 and 3.
7	Double last digit and subtract from the rest. Is result divisible by 7?
9	Sum of digits divisible by 9.
10	Ends in 0.

《曰》《圖》《臣》《臣》

 \equiv

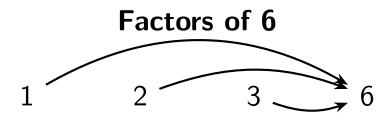
- $\sqrt{29} \approx 5.38$
- Check divisibility by 2, 3, 5
- $\bullet~$ Not divisible by any $\rightarrow~29~is~a~prime~number$

◆ロト ◆聞ト ◆臣ト ◆臣ト

1

A **composite number** is a natural number greater than 1 that is not prime. It has more than two positive divisors. **Examples:**

◆ロト ◆聞ト ◆臣ト ◆臣ト


9 / 13

∃ <\0<</p>

- 4, 6, 9, 12, ...
- Smallest composite is 4
- All even numbers ¿ 2 are composite

Example: Composite Number 6

6 has the factors: 1, 2, 3, 6

 $1 \times 6 = 6, \quad 2 \times 3 = 6$

www.aselebelateefatacademy.com

Example: Composite Number 9

9 has the factors: 1, 3, 9

 $1 \times 9 = 9, \quad 3 \times 3 = 9$

www.aselebelateefatacademy.com

Prime and Composite Number Classification

Number	Туре
2	Prime
4	Composite
5	Prime
6	Composite
7	Prime
9	Composite
11	Prime
12	Composite
13	Prime
15	Composite

www.aselebelateefatacademy.com

▲ロト ▲圖ト ▲国ト ▲国ト

Ξ 9 Q (P

- Prime numbers are essential in various fields of mathematics and cryptography.
- Composite numbers provide useful insight into factorization and number theory.
- Distinguishing between prime and composite numbers is a key skill in mathematics.

・ロト ・ 四ト ・ ヨト ・ ヨト

Э